4.4 Article

Neurotoxicological effects associated with short-term exposure of Sprague-Dawley rats to hydrogen sulfide

Journal

NEUROTOXICOLOGY
Volume 22, Issue 3, Pages 375-385

Publisher

INTOX PRESS INC
DOI: 10.1016/S0161-813X(01)00021-3

Keywords

rat; inhalation; hydrogen sulfide; behavior; water maze

Ask authors/readers for more resources

Although hydrogen sulfide (H2S) is a known neurotoxic hazard, only a limited number of experimental animal studies have examined its neurochemical or behavioral effects. Our aim was to determine if short-term inhalation exposure of rats to H2S would result in altered brain catecholamine levels or impaired learning and memory. Three groups of adult male CD rats were tested; two groups were exposed by nose-only inhalation (0, 30, 80, 200, or 400 ppm H2S) and one group was exposed by whole-body inhalation (0, 10, 30, or 80 ppm H2S) for 3 h per day for five consecutive days. The first group (n = 10 rats per concentration) was tested immediately following each daily nose-only H2S exposure for spatial learning with a Morris water maze. Core body temperatures were also monitored in these animals during and after the last H2S exposure. The second group of rats (n = 10 rats per concentration) was tested for spontaneous motor activity immediately following the fifth exposure. These rats were then euthanized and striatal, hippocampal, and hindbrain catecholamine levels determined. A third group of rats (n = 5-7 rats per concentration) was pretrained on a multiple fixed-interval (FI) schedule and exposed whole-body. Daily performance on the FI schedule was compared for the week pre-exposure, for the exposure week immediately following daily exposures, and for the week postexposure. We observed significant reductions in motor activity, water maze performance, and body temperature following exposure only to high concentrations (greater than or equal to 80ppm) of H2S. Exposure to H2S did not affect regional brain catecholamine concentrations or performance on the FI schedule. Additional studies using other measures of behavior and longer-term exposure to H2S may be required to more definitively address conditions under which H2S exposure results in behavioral toxicity. (C) 2001 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available