4.7 Article

Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1

Journal

AMERICAN JOURNAL OF HUMAN GENETICS
Volume 68, Issue 6, Pages 1361-1372

Publisher

CELL PRESS
DOI: 10.1086/320599

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM060934, GM60934, R01 GM022942, GM22942] Funding Source: Medline

Ask authors/readers for more resources

Niemann-Pick disease type C (NPC) is a fatal, autosomal recessive lipidosis characterized by lysosomal accumulation of unesterified cholesterol and multiple neurological symptoms, such as vertical supranuclear ophthalmoplegia, progressive ataxia, and dementia. More than 90% of cases of NPC are due to a defect in Niemann-Pick C1 (NPC1), a late endosomal, integral membrane protein that plays a role in cholesterol transport or homeostasis. Biochemical diagnosis of NPC has relied on the use of patient skin fibroblasts in an assay to demonstrate delayed low-density lipoprotein (LDL)-derived cholesterol esterification and a cytological technique-filipin staining-to demonstrate the intracellular accumulation of cholesterol. A small percentage of patients, referred to as NPC variants, present with clinical symptoms of NPC but show near-normal results of these biochemical tests, making laboratory confirmation of NPC disease problematic. Here, we demonstrate that NPC-variant fibroblast samples can be detected as sphingolipid storage disease cells, using a fluorescent sphingolipid analog, BODIPY-lactosylceramide. This lipid accumulated in endosomes/lysosomes in variant cells preincubated with LDL cholesterol but targeted to the Golgi complex in normal cells under these conditions. The reproducibility of this technique was validated in a blinded study. In addition, we performed mutation analysis of the NPC1 gene in NPC variant and classical NPC cell samples and found a high incidence of specific mutations within the cysteine-rich region of NPC1 in variants. We also found that 5 of the 12 variant cell samples had no apparent defect in NPC1 but were otherwise indistinguishable from other variant cells. This is a surprising result, since, in general, similar to 90% of patients with NPC possess defects in NPC1. Our findings should be useful for the detection of NPC variants and also may provide significant new insight regarding NPC1 genotype/phenotype correlations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available