4.5 Article

In vitro and in vivo biologic effects of Ospemifene (FC-1271a) in breast cancer

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0960-0760(01)00066-8

Keywords

Ospemifene; SERMs; FC-1271a; metabolites; MCF-7; MDA-MB-231; pS2

Funding

  1. NIEHS NIH HHS [5T32ES07059] Funding Source: Medline

Ask authors/readers for more resources

Ospemifene (FC-1271a) is a novel selective estrogen receptor modulator under development for osteoporosis prevention. In the present paper, we examine both the in vitro and in vivo effects of FC-1271a in breast cancer models, In vitro, the growth inhibitory effects of FC-1271a and its main metabolite are investigated in MCF-7 and MDA-MB-231 human breast cancer cells at doses ranging from 0.1 to 10 muM. Modulation of pS2 expression, an indicator of estrogen activity, was also examined in all experiments using reverse transcription-polymerase chain reaction. In vivo, the effects of treatment with 10, 25, 50, or 100 mg/kg FC-1271a on MCF-7 and MDA-MB-231 human tumor xenografts in athymic, ovariectomized mice were determined. For MCF-7 cells, FC-1271a and its main metabolite, toremifene VI (TOR VI) displayed anti-estrogenic effects in vitro as shown through growth inhibition and decreased expression of pS2. Treatment with FC-1271a in vivo inhibited MCF-7 tumor growth, compared with control (P less than or equal to 0.05). FC- 1271a and TOR VI did not inhibit the growth of MDA-MB-231 cells in vitro, and no clear effects of FC-1271a treatment were seen on MDA-MB-231 tumor growth in vivo. In conclusion, FC-1271a appears to exert anti-estrogenic effects dependent on estrogen receptor positivity in vitro and in vivo on the growth of MCF-7 cells. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available