4.2 Article

Quantitative comparison of growth-associated protein-43 and substance P in ulcerative colitis

Journal

JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY
Volume 49, Issue 6, Pages 749-757

Publisher

HISTOCHEMICAL SOC INC
DOI: 10.1177/002215540104900608

Keywords

GAP-43; substance P; quantitative morphometry; ulcerative colitis

Categories

Ask authors/readers for more resources

The aim of this study was to compare immunoreactivities for substance P with other enteric neuropeptides and GAP-43, a general marker for enteric nerves, in normal human colon and in different stages of ulcerative colitis. Tissue samples from normal colon and regions of ulcerative colitis colon were obtained at surgery and immunostained for substance P, vasoactive intestinal polypeptide (VIP), somatostatin, calcitonin gene-related peptide (CGRP), enkephalin, galanin, GAP-43, and neuron-specific enolase (NSE). Visual examination and semiquantitative analysis revealed a clear increase in the immunoreactivity for substance P in ulcerative colitis, whereas no differences were observed in the distribution of the other peptides. Therefore, quantitative analysis was performed only for substance P immunoreactivity in the lamina propria, circular muscle layer, and myenteric ganglia. In the lamina propria, the score of total intensity of substance P immunoreactivity was 0.55 +/- 0.15 (mean +/- SEM) in normal colon, 1.30 +/- 0.35 (p=0.087) in least affected colon, and 2.22 +/- 0.28 (p <0.001) in moderately affected colon, whereas no significant differences were observed in immunoreactivities for GAP-43. Similar results were obtained for the mean substance P- or GAP-43-immunoreactive area. In the circular muscle layer, the number, density, total intensity, and perimeter of substance P- and CAP-43-immunoreactive fibers were essentially similar in normal colon, and in mild or moderately affected colon. We conclude that ulcerative colitis does not change the density of gut innervation as a whole. However, the density of substance P-containing nerves is specifically increased, probably due to increased peptide synthesis leading to better visibility of the fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available