4.8 Article

Chemically coupled hydroxyapatite-polyethylene composites: structure and properties

Journal

BIOMATERIALS
Volume 22, Issue 11, Pages 1311-1320

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(00)00283-0

Keywords

hydroxyapatite; silanation; high-density polyethylene; grafting; structure; properties

Ask authors/readers for more resources

Silanation of hydroxyapatite and acrylic acid grafting of polyethylene were employed to improve bonding between hydroxyapatite and polyethylene. The structure and properties of chemically coupled hydroxyapatite reinforced high-density polyethylene (HA/HDPE) composites were subsequently investigated using various techniques. It was shown that there existed a silicon-containing interphase between the hydroxyapatite particle and the polyethylene matrix. The silane coupling agent used promoted chemical adhesion between hydroxyapatite particles and the polymer. The use of the silane coupling agent also facilitated the penetration of polymer into cavities in individual ceramic particles, which resulted in enhanced mechanical interlocking at the matrix-reinforcement interface. With a strong bond (both mechanical and chemical) being formed between hydroxyapatite and polyethylene, chemically coupled HA/HDPE composites possessed improved mechanical properties and fracture behaviour. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available