4.2 Article

Experimental and theoretical analysis of phase singularity dynamics in cardiac tissue

Journal

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY
Volume 12, Issue 6, Pages 716-722

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1540-8167.2001.00716.x

Keywords

nonlinear dynamics; arrhythmia; phase singularity; topologic charge; optical imaging; cardiac reentry

Ask authors/readers for more resources

Introduction: Quantitative analysis of complex self-excitatory wave patterns, such as cardiac fibrillation and other high-order reentry, requires the development of new tools for identifying and tracking the most important features of the activation, such as phase singularities. Methods and Results: Image processing operations can be used to detect the phase singularity at the tip of a spiral wave. The phase space behavior of a spatiotemporal sequence of data may be reconstructed using time-series analysis. The phase singularities then are localized efficiently by computing the topologic charge density as the curl of the spatial phase gradient, We analyzed the singularity interaction dynamics of both experimentally observed and numerically simulated instances of quatrefoil reentry and found that the singularity behavior in the experimental preparations can be classified into three categories on the basis of how their separation changes with time. Conclusion: Topologic charge densities can be calculated easily and efficiently to reveal phase singularity behavior. However, the differences between theoretical and experimental observations of singularity separation distances indicate the need for more sophisticated numerical models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available