4.7 Article

Master equation for hydrogen recombination on grain surfaces

Journal

ASTROPHYSICAL JOURNAL
Volume 553, Issue 2, Pages 595-603

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/320975

Keywords

dust, extinction; ISM : abundances; ISM : molecules; molecular processes

Ask authors/readers for more resources

Recent experimental results on the formation of molecular hydrogen on astrophysically relevant surfaces under conditions similar to those encountered in the interstellar medium provided useful quantitative information about these processes. Rate equation analysis of experiments on olivine and amorphous carbon surfaces provided the activation energy barriers for the diffusion and desorption processes relevant to hydrogen recombination on these surfaces. However, the suitability of rate equations for the simulation of hydrogen recombination on interstellar grains, where there might be very few atoms on a grain at any given time, has been questioned. To resolve this problem, we introduce a master equation that takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. The hydrogen recombination rate on microscopic grains, as a function of grain size and temperature, is then calculated using the master equation. The results are compared to those obtained from the rate equations, and the conditions under which the master equation is required are identified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available