4.6 Article

High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties

Journal

APPLIED PHYSICS LETTERS
Volume 78, Issue 24, Pages 3824-3826

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1377856

Keywords

-

Ask authors/readers for more resources

Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion. The solubility behavior of TM ions was discussed from the viewpoints of the ionic radius and valence start. The magneto-optical responses coincident with absorption spectra were observed for Mn- and Co-doped samples. Cathodoluminescence spectra were studied for Cr-, Mn-, Fe-, and Co-doped samples. among which Cr-doped ZnO showed two sharp peaks at 2.97 eV and 3.71 eV, respectively, at the expense of the exciton emission peak of pure ZnO at 3.25 eV. Different magnetoresistance behavior was observed for the samples codoped with n-type carriers. Ferromagnetism was not observed for Cr- to Cu-doped samples down to 3 K. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available