4.8 Article

Determination of metal-EDTA complexes in soil solution and plant xylem by ion chromatography-electrospray mass spectrometry

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 35, Issue 12, Pages 2589-2593

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es001893y

Keywords

-

Ask authors/readers for more resources

An ion chromatography-electrospray mass spectrometry (IC-MS) method was developed to quantify the metal complexes of ethylenediaminetetraacetic acid (EDTA) in soil solution and plant xylem exudate. Suitable separation of the metal-EDTA complexes was achieved on a Dionex AS5 column using 2 mM Na2CO3 as the eluant. However, satisfactory detection by eluant suppressed IC-MS, in either the positive or negative ion detection mode, could not be attained. A new eluant that still attained suitable separation and produced ionic species that could be detected by MS in the negative ion mode was developed. The eluant consisted of 2.5 mM (NH4)(2)CO3, 9.7 mM NH4OH, and 4% (v/v) methanol acid had a pH 9.9. Even though eluant suppressed IC-MS degraded detection limits by a factor of 4 over the nonsuppressed system, using the retention time and not the m/z (mass-to-charge ratio) of the intact chelate for identification, the latter allowed the metal complexes to be detected intact and was optimized for the analysis of environmental samples. The number of metal-EDTA species that could be detected was limited by the eluant used for ion chromatography (i.e. only those complexes that were stable at high pH), with metal-EDTA complexes of Al, Cd, Cu, Co, Mn, Ni, Pb, and Zn being adequately resolved. Iron(lll), Ca, MgEDTA, and EDTA itself were not detected. Detection limits for the various complexes ranged from 0.1 to 1 muM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available