4.6 Article

Interaction of 11-cis-retinol dehydrogenase with the chromophore of retinal G protein-coupled receptor opsin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 24, Pages 21098-21104

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M010441200

Keywords

-

Ask authors/readers for more resources

Vertebrate opsins in both photoreceptors and the retinal pigment epithelium (RPE) have fundamental roles in the visual process. The visual pigments in photoreceptors are bound to 11-cis-retinal and are responsible for the initiation of visual excitation, Retinochrome-like opsins in the RPE are bound to all-trans-retinal and play an important role in chromophore metabolism. The retinal G protein-coupled receptor (RGR) of the RPE and Muller cells is an abundant opsin that generates 11-cis-retinal by stereospecific photoisomerization of its bound all-trans-retinal chromophore. We have analyzed a 32-kDa protein (p32) that co-purifies with bovine RGR from RPE microsomes. The co-purified p32 was identified by mass spectrometric analysis as 11-cis-retinol dehydrogenase (cRDH), and enzymatic assays have confirmed the isolation of an active cRDH. The co-purified cRDH showed marked substrate preference to 11-cis-retinal and preferred NADH rather than NADPH as the cofactor in reduction reactions. cRDH did not react with endogenous all-trans-retinal bound to RGR but reacted specifically with 11-cis-retinal that was generated by photoisomerization after irradiation of RGR. The reduction of 11-cis-retinal to 11-cis-retinol by cRDH enhanced the net photoisomerization of all-trans-retinal bound to RGR. These results indicate that cRDH is involved in the processing of 11-cis-retinal after irradiation of RGR opsin and suggest that cRDH has a novel role in the visual cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available