4.5 Article

Neuroprotection of S(+) ketamine isomer in global forebrain ischemia

Journal

BRAIN RESEARCH
Volume 904, Issue 2, Pages 245-251

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(01)02465-9

Keywords

glutamate; laser-doppler flowmetry; oxygenation; histology

Categories

Ask authors/readers for more resources

dThe non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine can block the action of excitotoxic amino acids in the central nervous system. S(+) ketamine has a 2-3 times higher anesthetic potency compared with the ketamine-racemate and also shows a higher neuroprotective efficacy in vitro. To determine the neuroprotective activity of S(+) ketamine compared with its R(-) stereoisomer in vivo, we examined the functional and neurohistological outcome in rats treated 15 min after global forebrain ischemia with S(+) ketamine in different dosages compared with R(-) ketamine. Influence of the treatment on regional cerebral blood flow (rCBF) and cortical oxygen saturation (HbO(2)) was monitored over 1 h after the ischemia using laser doppler flowmetry and microphotospectrometry respectively. Sixty and ninety mg/kg of S(+) ketamine but not R(-) ketamine significantly reduced neuronal cell loss in the cortex compared with the saline treated group. No significant neuroprotection was observed in the hippocampus. Although no significant change in rCBF was found, S(S) ketamine restored the cortical HbO(2) to preischemic values. These results indicate that S(+) ketamine in higher dosages can reduce neuronal damage in the cortex after cerebral ischemia, possibly by improving the ratio of oxygen supply to consumption in the postischemic tissue. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available