4.7 Review

Palladium-copper catalyzed synthesis of benzofused heterocycles with two heteroatoms:: Novel and highly regio- and stereoselective syntheses of (E)-2-(2-arylvinyl)-3-tosyl-2,3-dihydro-1,3-benzothiazoles and (E)-2-alkyl(aryl)idene-3,4-dihydro-2H-1,4-benzothiazines

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 66, Issue 13, Pages 4563-4575

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jo001783+

Keywords

-

Ask authors/readers for more resources

A highly novel, general, and convenient palladium and copper-catalyzed procedure has been developed for the synthesis of (E)-2-(2-arylvinyl)-3-tosyl-2,3-dihydro-1,3-benzothiazoles 28-40. 3-(2-Aminophenylthio)prop-1-yne 1 reacts with aryl iodides 2-14 under palladium-copper catalysis to yield the disubstituted alkynes 15-27 which after tosylation undergo a novel cyclization with CuI in the presence of triethylamine in THF to (E)-2-(2-arylvinyl)-3-tosyl-2,3-dihydro-1,3-benzothiazoles 28-40 rather than to the expected 3-alkylidene-4-tosyl-3,4-dihydro-2H- 1,4-benzothiazines 41. The re action is highly regio- and stereoselective. The synthesis of 2-(2 -arylethyl)-3-tosylbenzotkiazolines 42-47, 2-(2-arylvinyl)benzothiazoles 48-54, and a novel 5-substituted uracil derivative 55 of potential biological importance is also being reported. Similarly, the palladium-copper-catalyzed arylation of S- [2-(N-prop-2'-ynyl)aminophenyl]-N,N-dimethylthiocarbamate 58 with aryl iodides yields the disubstituted alkynes 59 which on cyclization with KOH in methanol leads to (E)-2-(2-aryl)methylidene-3,4-dihydro-2H 1,4-benzothiazines 61. The reaction of the diiodo compounds 12-14a, however, with 58 under palladium-copper-catalyzed reactions involves the participation of only one of the iodo groups in the heteroannulation process giving compounds 61i and 61j. These are amenable to further palladium-catalyzed reactions and afford polyunsaturated heteroaromatic compounds 62 and 63.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available