4.6 Article

Membrane topology of the ATP binding cassette transporter ABCR and its relationship to ABC1 and related ABCA transporters -: Identification of N-linked glycosylation sites

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 26, Pages 23539-23546

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M101902200

Keywords

-

Funding

  1. NEI NIH HHS [EY02422] Funding Source: Medline

Ask authors/readers for more resources

ABCR is a member of the ABCA subclass of ATP binding cassette transporters that is responsible for Stargardt macular disease and implicated in retinal transport across photoreceptor disc membranes. It consists of a single polypeptide chain arranged in two tandem halves, each having a multi-spanning membrane domain followed by a nucleotide binding domain. To delineate between several proposed membrane topological models, we have identified the exocytoplasmic (extracellular/lumen) N-linked glycosylation sites on ABCR, Using trypsin digestion, site-directed mutagenesis, concanavalin A binding, and endoglycosidase digestion, we show that ABCR contains eight glycosylation sites. Four sites reside in a 600-amino acid exocytoplasmic domain of the N-terminal half between the first transmembrane segment H1 and the first multi-spanning membrane domain, and four sites are in a 275-amino acid domain of the C half between transmembrane segment H7 and the second multi-spanning membrane domain. This leads to a model in which each half has a transmembrane segment followed by a large exocytoplasmic domain, a multi-spanning membrane domain, and a nucleotide binding domain. Other ABCA transporters, including ABC1 linked to Tangier disease, are proposed to have a similar membrane topology based on sequence similarity to ABCR. Studies also suggest that the N and C halves of ABCR are linked through disulfide bonds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available