4.6 Article

DHEA attenuates PDGF-induced phenotypic proliferation of vascular smooth muscle A7r5 cells through redox regulation

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2010.04.125

Keywords

Dehydroepiandrosterone; Platelet-derived growth factor; Vascular smooth muscle cells; Glutaredoxin 1; Glutathione; Low molecular weight-protein tyrosine phosphatase

Funding

  1. Ministry of Health, Labor, and Welfare of Japan [H17-Choju-017]

Ask authors/readers for more resources

It is known that dehydroepiandrosterone (DHEA) inhibits a phenotypic switch in vascular smooth muscle cells (VSMC) induced by platelet-derived growth factor (PDGF)-BB. However, the mechanism behind the effect of DHEA on VSMC is not clear. Previously we reported that low molecular weight-protein tyrosine phosphatase (LMW-PTP) dephosphorylates PDGF receptor (PDGFR)-beta via a redox-dependent mechanism involving glutathione (GSH)/glutaredoxin (GRX)1. Here we demonstrate that the redox regulation of PDGFR-beta is involved in the effect of DHEA on VSMC. DHEA suppressed the PDGF-BB-dependent phosphorylation of PDGFR-beta. As expected, DHEA increased the levels of GSH and GRX1, and the GSH/GRX1 system maintained the redox state of LMW-PTP. Down-regulation of the expression of LMW-PTP using siRNA restored the suppression of PDGFR-beta-phosphorylation by DHEA. A promoter analysis of GRX1 and gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of GSH synthesis, showed that DHEA up-regulated the transcriptional activity at the peroxisome proliferator-activated receptor (PPAR) response element, suggesting PPAR alpha plays a role in the induction of GRX1 and gamma-GCS expression by DHEA. In conclusion, the redox regulation of PDGFR-beta is involved in the suppressive effect of DHEA on VSMC proliferation through the up-regulation of GSH/GRX system. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available