4.6 Article

The autophagy-lysosome pathway: A novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2010.03.026

Keywords

Autophagy; ox-LDL; Degradation; HUVECs; Lysosome

Funding

  1. Suzhou Social Progress Foundation [SZD0875]
  2. Plans for Graduate Research and Innovation in Colleges and Universities of Jiangsu Province [CX09B_036Z]

Ask authors/readers for more resources

Oxidized low-density lipoprotein (ox-LDL) is involved in the pathogenesis of atherosclerosis and atherosclerotic plaque rupture by promoting lipid accumulation, proinflammatory responses, and cell death. LDL is mainly oxidized in the subendothelial layer of the vascular wall and then can be taken up by vascular endothelial cells. However, little is known about the intracellular processing of the damaged LDL Previous studies found that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis thaliana, while ox-LDL can activate autophagy in EA.hy926 endothelial cells, suggesting a possible role of autophagy in the degradation of ox-LDL by endothelial cells. The present study showed that ox-LDL aggregated in human umbilical vein endothelial cells (HUVECs) and brought about an increase in the formation of autophagosomes and autolysosomes. Ox-LDL-induced increase in the autophagic level was blocked by treatment with the autophagy inhibitor 3-methyladenine and increased by the autophagy inducer rapamycin, while the aggregation of Dil-labled ox-LDL was increased by 3-methyladenine and decreased by rapamycin. In addition, Dil-labeled ox-LDL colocalized with the autophagy marker MDC, microtubule-associated protein light chain 3 (MAP1-LC3), and lysosome-associated membrane protein 2a (lamp2a). HUVECs treated with Dil-labeled-ox-LDL showed a much greater degree of overlap of MAP1-LC3 and Lamp2a than control. The results suggest that ox-LDL activates the autophagic lysosome pathway in HUVECs through the LC3/beclin1 pathway, leading to the degradation of ox-LDL. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available