4.8 Article

Differential distribution of simple sequence repeats in eukaryotic genome sequences

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 18, Issue 7, Pages 1161-1167

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/oxfordjournals.molbev.a003903

Keywords

microsatellites; DNA strand slippage; codon repeats; genome sequences; database

Ask authors/readers for more resources

Complete chromosome/genome sequences available from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces cerevisiae were analyzed for the occurrence of mono-, di-, tri-, and tetranucleotide repeats. In all of the genomes studied, dinucleotide repeat stretches tended to be longer than other repeats. Additionally, tetranucleotide repeats in humans and trinucleotide repeats in Drosophila also seemed to be longer. Although the trends for different repeats are similar between different chromosomes within a genome, the density of repeats may vary between different chromosomes of the same species. The abundance or rarity of various di- and trinucleotide repeats in different genomes cannot be explained by nucleotide composition of a sequence or potential of repeated motifs to form alternative DNA structures. This suggests that in addition to nucleotide composition of repeat motifs, characteristic DNA replication/repair/recombination machinery might play an important role in the genesis of repeats. Moreover, analysis of complete genome coding DNA sequences of Drosophila, C. elegans, and yeast indicated that expansions of codon repeats corresponding to small hydrophilic amino acids are tolerated more, while strong selection pressures probably eliminate codon repeats encoding hydrophobic and basic amino acids. The locations and sequences of all of the repeat loci detected in genome sequences and coding DNA sequences are available at http://www.ncl-india.org/ssr and could be useful for further studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available