4.8 Article Proceedings Paper

A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes

Journal

JOURNAL OF POWER SOURCES
Volume 97-8, Issue -, Pages 269-273

Publisher

ELSEVIER
DOI: 10.1016/S0378-7753(01)00622-X

Keywords

Mg electrodes; Li electrodes; surface films; passivation; cycling efficiency; EIS; EQCM

Ask authors/readers for more resources

This paper describes briefly the difference between reversible lithium and magnesium electrodes. In the case of lithium, the active metal is always covered by surface films. Li dissolution-deposition is reversible only when the surface films contain elastomers and are flexible. Hence, they can accommodate the morphological changes of the electrode during the electrochemical processes without breaking down. In an ideal situation, lithium is deposited beneath the surface films, while being constantly protected in a way that prevents reactions between freshly deposited lithium and solution species. In contrast to lithium, magnesium electrodes are reversible only in solutions where surface film free conditions exist. Mg does not react with ethers, and thus, in ethereal solutions of Grignard reagents (RMgX, where R = alkyl, aryl, X = halide) and complexes of the following type: Mg(AlX4-nRn 'R ' (n ))(2), R and R ' = alkyl groups, X = halide, A = Al, 0 < n < 4 and n ' + n = n, magnesium electrodes behave reversibly. However, it should be noted that the above stoichiometry of the Mg salts does not reflect the true structure of the active ions in solutions. Mg deposition does not occur via electron transfer to simply solvated Mg2+ ions. The behavior of Mg electrodes in these solutions is discussed in light of studies by EQCM, EIS, FTIR, XPS, STM and standard electrochemical techniques. (C) 2001 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available