4.7 Article

Microstructural shear localization in plastic deformation of amorphous solids

Journal

PHYSICAL REVIEW E
Volume 64, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.64.011504

Keywords

-

Ask authors/readers for more resources

The shear-transformation-zone (STZ) theory of plastic deformation predicts that sufficiently soft, noncrystalline solids are linearly unstable against forming periodic arrays of microstructural shear bands. A limited nonlinear analysis indicates that this instability may be the mechanism responsible for strain softening in both constant-stress and constant-strain-rate experiments. The analysis presented here pertains only to one dimensional banding patterns in two-dimensional systems, and only to very low temperatures. It uses the rudimentary form of the STZ theory in which there is only a single kind of zone rather than a distribution of them with a range of transformation rates. Nevertheless. the results are in qualitative agreement with essential features of the available experimental data. The nonlinear theory also implies that harder materials, which do not undergo a microstructural instability, may form isolated shear bands in weak regions or, perhaps, at points of concentrated stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available