4.5 Article

Tetracyclines inhibit activated B cell function

Journal

INTERNATIONAL IMMUNOLOGY
Volume 13, Issue 7, Pages 921-931

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/intimm/13.7.921

Keywords

B lymphocyte; Ig; isotype switching; metalloproteinase; tetracycline

Categories

Funding

  1. NCI NIH HHS [R29CA73696] Funding Source: Medline
  2. NIAID NIH HHS [AI07285, R01AI37123, R01AI45012, AI07169] Funding Source: Medline
  3. NICHD NIH HHS [R01HD36293] Funding Source: Medline

Ask authors/readers for more resources

Tetracyclines have recently been shown to exert a number of pleiotropic anti-inflammatory and immunomodulatory activities, independent of their antibiotic properties. These include the ability to inhibit metalloproteinases (MP), a class of enzymes involved in crucial cellular functions such as the shedding of soluble mediators and their receptors from the cell surface, as well as interaction with, and remodeling of, the extracellular matrix. Here we report that doxycycline at therapeutic concentrations (1-5 mug/ml) significantly suppresses Ig secretion and class switching by in vitro activated murine B cells. Suppression of Ig secretion correlates with a decrease in levels of mRNA for the terminal B cell differentiation-associated genes Blimp-1 and mad-4, as well as to a reduction in expression of the plasma cell markers Syndecan-1 and J chain. Inhibition of class switching occurs at the recombination stage and is also induced by other MIR inhibitors, including tetracycline analogs lacking antibiotic activity and the chemically unrelated hydroxamate KB8301. These novel, direct effects of MP inhibitors on B lymphocytes suggest an intrinsic role for MP in B cell activation and likely explain some of the observed in vivo immunomodulatory properties of tetracyclines. Moreover, these findings have significant implications for tetracycline therapy in Ig-mediated autoimmune or allergic diseases and raise questions about the use of doxycycline-inducible transgenic systems for the study of B cell function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available