4.5 Article

New function of CDC13 in positive telomere length regulation

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 21, Issue 13, Pages 4233-4245

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.21.13.4233-4245.2001

Keywords

-

Ask authors/readers for more resources

Two roles for the Saccharomyces cerevisiae Cdc13 protein at the telomere have previously been characterized: it recruits telomerase to the telomere and protects chromosome ends from degradation. In a synthetic lethality screen with YKU70, the 70-kDa subunit of the telomere-associated Yku heterodimer, we identified a new mutation in CDC13, cdc13-4, that points toward an additional regulatory function of CDC13. Although CDC13 is an essential telomerase component in vivo, no replicative senescence can be observed in cdc13-4 cells. Telomeres of cdc13-4 mutants shorten for about 150 generations until they reach a stable level. Thus, in cdc13-4 mutants, telomerase seems to be inhibited at normal telomere length but fully active at short telomeres. Furthermore, chromosome end structure remains protected in cdc13-4 mutants. Progressive telomere shortening to a steady-state level has also been described for mutants of the positive telomere length regulator TEL1. Strikingly, cdc13-4/tell Delta double mutants display shorter telomeres than either single mutant after 125 generations and a significant amplification of Y' elements after 225 generations. Therefore CDC13, TEL1, and the Yku heterodimer seem to represent distinct pathways in telomere length maintenance. Whereas several CDC13 mutants have been reported to display elongated telomeres indicating that Cdc13 functions in negative telomere length control, we report a new mutation leading to shortened and eventually stable telomeres. Therefore we discuss a key role of CDC13 not only in telomerase recruitment but also in regulating telomerase access, which might be modulated by protein-protein interactions acting as inhibitors or activators of telomerase activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available