4.6 Article

The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 67, Issue 7, Pages 2916-2921

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.67.7.2916-2921.2001

Keywords

-

Ask authors/readers for more resources

Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents, The method was modified to avoid O-2 contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O-2 contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel, isotope saturation occurred at a leucine concentration of above about 50 nM in both ode and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O-2 contamination of anoxic water during I-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O-2-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available