4.2 Article

Nano-tribological properties and mechanisms of the liquid crystal as an additive

Journal

CHINESE SCIENCE BULLETIN
Volume 46, Issue 14, Pages 1227-1232

Publisher

SCIENCE PRESS
DOI: 10.1007/BF02900609

Keywords

liquid crystal; additives; thin film lubrication; electroviscous effect

Ask authors/readers for more resources

Under conditions of low speed, small viscosity and molecularly smooth tribo-surfaces, the behavior of lubricant film in the nano scale is different from that in elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Due to the size effect, long-range ordered structure of liquid crystal (LC) has great effects on the tribological properties and film-forming mechanism of thin film in the nano scale. The technique of relative optical interference intensity (ROII) was used to investigate nano-tribological properties when cholesteryl LCs are added to hexadecane. The results indicate that the practical film thickness of hexadecane with liquid crystal is 3-5 times as large as that expected from EHL theory in the low speed region. The film thickness increases with the enhancement in polarity and concentration of LC in hexadecane, and external DC voltage. The effective viscosity of lubricant is related to the film thickness and the voltage and it varies from bulk viscosity to several times or tens of times of bulk viscosity with reducing film thickness, and slowly rises with increasing external DC voltage and then trends to a constant. The higher ordered degree of molecules close to solid surfaces gives rise to a thicker film.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available