4.7 Article

2D SEDFLUX 1.0C: an advanced process-response numerical model for the fill of marine sedimentary basins

Journal

COMPUTERS & GEOSCIENCES
Volume 27, Issue 6, Pages 731-753

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0098-3004(00)00139-4

Keywords

process-response model; plumes; turbidity currents; debris flows; boundary-layer transport; facies architecture; stratigraphy

Ask authors/readers for more resources

Numerical simulators of the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology. Such models can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves. SEDFLUX is such a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. SEDFLUX includes the effects of sea-level fluctuations, river floods, ocean storms, and other relevant environmental factors (climate trends, random catastrophic events), at a time step (daily to yearly) that is sensitive to short-term variations of the seafloor. SEDFLUX combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin, including sediment redistribution by (1) river mouth dynamics, (2) buoyant surface plumes, (3) hyperpycnal flows, (4) ocean storms, (5) slope instabilities, (6) turbidity currents, and (7) debris flows. The model allows for the deposit to compact, to undergo tectonic processes (faults, uplift) and isostatic subsidence from the sediment load. The modeled architecture has a typical vertical resolution of 1-25 cm, and a typical horizontal resolution of between 1 and 100m. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available