4.7 Article

A coordinated change in chemokine responsiveness guides plasma cell movements

Journal

JOURNAL OF EXPERIMENTAL MEDICINE
Volume 194, Issue 1, Pages 45-56

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1084/jem.194.1.45

Keywords

CXCR4; CXCR5; CCR7; bone marrow; spleen

Funding

  1. NIAID NIH HHS [N01AI40098] Funding Source: Medline
  2. NICHD NIH HHS [K12-HD00850, K12 HD000850] Funding Source: Medline

Ask authors/readers for more resources

Antibody-secreting plasma cells are nonrecirculatory and lodge in splenic red pulp, lymph node medullary cords, and bone marrow. The factors that regulate plasma cell localization are poorly defined. Here we demonstrate that, compared with their B cell precursors, plasma cells exhibit increased chemotactic sensitivity to the CXCR4 ligand CXCL12. At the same time, they downregulate CXCR5 and CCR7 and have reduced responsiveness to the B and T zone chemokines CXCL13, CCL19, and CCL21. We demonstrate that CXCL12 is expressed within splenic red pulp and lymph node medullary cords as well as in bone marrow. In chimeric mice reconstituted with CXCR4-deficient fetal liver cells, plasma cells are mislocalized in the spleen, found in elevated numbers in blood, and fail to accumulate normally in the bone marrow. Our findings indicate that as B cells differentiate into plasma cells they undergo a coordinated change in chemokine responsiveness that regulates their movements in secondary lymphoid organs and promotes lodgment within the bone marrow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available