4.7 Article

Conformational analysis of a glycosylated human myelin oligodendrocyte glycoprotein peptide epitope able to detect antibody response in multiple sclerosis

Journal

JOURNAL OF MEDICINAL CHEMISTRY
Volume 44, Issue 14, Pages 2378-2381

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jm010811t

Keywords

-

Ask authors/readers for more resources

Myelin oligodendrocyte glycoprotein (MOG), a minor myelin component, is an important central nervous system specific target autoantigen for primary demyelination in autoimmune diseases such as multiple sclerosis (MS). The native structure of MOG presents a glycosylation site at position 31 (Asn(31)). It has been recently described that glycosylation of a MOG peptide epitope improved the detection of specific autoantibodies in sera of MS patients. The solution conformational behavior of two MOG derived peptides-hMOG(30-50) (1) and the glycosylated analogue [Asn(31)(N-beta -Glc)]hMOG(30-50) (2)-were investigated through NMR analysis in a water/HFA solution. Conformational studies revealed that peptides 1 and 2 adopted similar conformations in this environment. In particular, they showed strong propensity to assume a well-defined amphipatic structure encompassing residues 41-48. The N-terminal region resulted to be almost completely unstructured for both peptides. The presence in 1 of a low populated Asx-turn conformation characteristic of the Asn-Xaa-Thr glycosylation sites was the only conformational difference between peptides 1 and 2. Thus, the specific antibody recognition of peptide 2 is most likely driven by direct interactions of the antibody binding site with the Asn-linked sugar moiety.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available