4.1 Article

Evaluation of a silica-coated magnetic nanoparticle for the immobilization of a His-tagged lipase

Journal

BIOCATALYSIS AND BIOTRANSFORMATION
Volume 27, Issue 4, Pages 246-253

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10242420903042627

Keywords

magnetic nanoparticles; silica coating; metal affinity; enzyme immobilization; His-tagged lipase

Funding

  1. Korea Science and Engineering Foundation (KOSEF)
  2. Korea government (MOST) [R01-2007-000-11570-0, M10755020001-07N5502-00110]

Ask authors/readers for more resources

Magnetic particles of size 10 nm have been coated with silica to a mean diameter of 40 nm and charged with Cu2+ ions via a multidentate ligand, iminodiacetic acid (IDA), for the immobilization of His-tagged Bacillus stearothermopilus L1 lipase. Microporous (average pore diameter of 60 angstrom) silica gel with a mean particle diameter of 115 mu m has been used as a comparative support material. The molar ratio of Cu2+ to IDA was found to be 1:1.14 and 1:1.99 in the silica gel and the silica-coated magnetic nanoparticles (SiMNs), respectively. The specific activity of the immobilized enzyme was found to conform to the following order: Cu2+-charged SiMNSiMNCu2+-charged silica gelsilica gel. When it was immobilized on the Cu2+-charged SiMNs, over 70% of the initial activity of the lipase remained after it had been reused five times. However, only 20% of the initial activity remained after the enzyme immobilized on the Cu2+-charged silica gel had been reused five times. For the enzyme immobilized on supports without Cu2+ cations, all activity was lost after threefold reuse. The differences in the specific activities and the efficiencies of reuse of the enzymes immobilized on the various support materials are discussed in terms of immobilization mechanisms (physical adsorption vs. coordination bonding), mass transfer of a substrate and a product of the enzyme reaction, and the status of the Cu (Cu bound to the IDA on the silica layer vs. Cu directly adsorbed on the silica layer).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available