4.6 Article

Structural determinants of cold adaptation and stability in a large protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 276, Issue 28, Pages 25791-25796

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M102741200

Keywords

-

Ask authors/readers for more resources

The heat-labile alpha -amylase from an antarctic bacterium is the largest known protein that unfolds reversibly according to a two-state transition as shown by differential scanning calorimetry, Mutants of this enzyme were produced, carrying additional weak interactions found in thermostable alpha -amylases, It is shown that single amino acid side chain substitutions can significantly modify the melting point T-m, the calorimetric enthalpy DeltaH(cal) the cooperativity and reversibility of unfolding, the thermal inactivation rate constant, and the kinetic parameters k(cat) and K-m. The correlation between thermal inactivation and unfolding reversibility displayed by the mutants also shows that stabilizing interactions increase the frequency of side reactions during refolding, leading to intramolecular mismatches or aggregations typical of large proteins. Although all mutations were located far from the active site, their overall trend is to decrease both k(cat) and K-m by rigidifying the molecule and to protect mutants against thermal inactivation. The effects of these mutations indicate that the cold-adapted alpha -amylase has lost a large number of weak interactions during evolution to reach the required conformational plasticity for catalysis at low temperatures, thereby producing an enzyme close to the lowest stability allowing maintenance of the native conformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available