4.7 Article

Anharmonic vibrational spectroscopy of the glycine-water complex:: Calculations for ab initio, empirical, and hybrid quantum mechanics/molecular mechanics potentials

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 115, Issue 3, Pages 1340-1348

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1379040

Keywords

-

Ask authors/readers for more resources

Effects of intermolecular hydrogen bonding between glycine and one water molecule on the vibrational spectrum are investigated, using ab initio (at the level of second order Moller-Plesset perturbation theory), empirical (OPLS-AA), and mixed ab initio/empirical quantum mechanics/molecular mechanics (QM/MM) potentials. Vibrational spectroscopy is calculated using the correlation corrected vibrational self-consistent field method that accounts for anharmonicities and couplings between different vibrational normal modes. The intermolecular hydrogen bonding interactions are found to be very strong and to affect vibrational frequencies and infrared intensities of both the glycine and the water molecule to a very large extent. The predicted ab initio anharmonic spectra can be used to identify amino acids in complexes with water in experimental studies. The OPLS-AA potential is found to describe hydrogen bonding between glycine and water incorrectly, and to predict erroneous vibrational spectra. Hybrid (QM/MM) techniques can, however, be used to calculate more reliable vibrational spectra, in agreement with full ab initio treatment of the whole system, provided that the regions that contain hydrogen bonds are described by ab initio potentials. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available