4.8 Article

Effects of the ionic environment, charge, and particle surface chemistry for enhancing a latex homogeneous immunoassay of C-reactive protein

Journal

ANALYTICAL CHEMISTRY
Volume 73, Issue 14, Pages 3417-3425

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac001529h

Keywords

-

Ask authors/readers for more resources

The role of the solution environment for a light-scattering, latex-particle-enhanced, homogeneous immunoassay of C-reactive protein (CRP) has been investigated in order to assess and optimize the immunoagglutination response. Latex particles of 50-170-nm sizes were covalently coupled with an IgG polyclonal antibody and subjected to an extensive optimization regime. This consisted of conditions responsible, in different degrees, for the principal attractive/repulsive forces affecting both colloidal stability and the antibody/antigen interaction: particle size, antibody concentration, ionic strength and species, pH, and amino acid chemistry of the particle surface. Careful control of these parameters was found to be necessary to achieve the desired effects of balancing high colloidal stability in the absence of antigen but promoting a rapid, sensitive, and dose-dependent agglutination with pathological serum samples, In addition, the estimation of fundamental properties governing intermolecular interaction (i.e. the Hamaker constant and critical coagulation concentration) was attempted to order to investigate a simple, practical means of defining a colloidal/immunoassay system under real conditions as well as real time. It is concluded that because each antibody system is unique, a similar optimization should be performed in diagnostic immunoassays of this type to maximize their clinical utility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available