4.5 Article Proceedings Paper

Two-event echos in single-molecule kinetics: A signature of conformational fluctuations

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 105, Issue 28, Pages 6536-6549

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp004349k

Keywords

-

Ask authors/readers for more resources

The relationship between event-averaged measurements and ensemble averaged measurements can be clarified by averaging along single-molecule trajectories. As a result, phenomenological chemical kinetics is shown to contain little information about dynamic disorder, and nonequilibrium relaxation experiments in the bulk state may not be interpreted according to the fluctuation -dissipation relation. The desired information about conformational fluctuations can be inferred from the statistics and correlation of half-reaction events. In particular, the echo time in the two-event probability distribution directly measures the conformational relaxation rate, and the amplitude of the echo probes the variance of the reaction rate. Detailed analysis of four different models (two-channel kinetic scheme, three-channel kinetic scheme, diffusion-modulated reaction, and the Gaussian stochastic rate model) confirms the generality of the two-event echo and its quantitative relations with conformation dynamics. As a general description of the fluctuating rate process, the stochastic rate model and its truncated version provide the flexibility to incorporate various kinetic schemes and functional forms and serve as a first-order model for analyzing single-molecule quantities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available