4.7 Article

Collapsar jets, bubbles, and Fe lines

Journal

ASTROPHYSICAL JOURNAL
Volume 556, Issue 1, Pages L37-L40

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/322934

Keywords

gamma rays : bursts; hydrodynamics; line : formation; stars : early-type; X-rays : general

Ask authors/readers for more resources

In the collapsar scenario, gamma-ray bursts are caused by relativistic jets expelled along the rotation axis of a collapsing stellar core. We discuss how the structure and time dependence of such jets depend on the stellar envelope and central engine properties, assuming a steady jet injection. It takes a few seconds for the jet to bore its way through the stellar core; most of the energy output during that period goes into a cocoon of relativistic plasma surrounding the jet. This material subsequently forms a bubble of magnetized plasma that takes several hours to expand, subrelativistically, through the envelope of a high-mass supergiant. Jet breakthrough and a conventional burst would be expected not only in He stars but possibly also in blue supergiants. Shock waves and magnetic dissipation in the escaping bubble can contribute a nonthermal UV/X-ray afterglow, and also excite Fe line emission from thermal gas, in addition to the standard jet deceleration power-law afterglow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available