4.7 Article

A staggered grid, Lagrangian-Eulerian remap code for 3-D MHD simulations

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 171, Issue 1, Pages 151-181

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/jcph.2001.6780

Keywords

MHD; shocks; Lagrangian

Ask authors/readers for more resources

In this paper an approach to multidimensional magnetohydrodynamics (MI-ID) which correctly handles shocks but does not use an approximate Riemann solver is proposed. This approach is simple and is based on control volume averaging with a staggered grid. The method builds on the older and often overlooked technique of on each step taking a fully 3-D Lagrangian step and then conservatively remapping onto the original grid. At the remap step gradient limiters are applied so that the scheme is monotonicity-preserving. For Euler's equations this technique, combined with an appropriately staggered grid and Wilkins artificial viscosity, can give results comparable to those from approximate Riemann solvers. We show how this can be extended to include a magnetic field, maintaining the divergence-free condition and pressure positivity and then present numerical test results. Where possible a comparison with other shock capturing techniques is presented and the advantages and disadvantages of the proposed scheme are clearly explained. (C) 2001 Academic Press.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available