4.7 Article

Ab initio simulation of charged slabs at constant chemical potential

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 115, Issue 4, Pages 1661-1669

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1379327

Keywords

-

Ask authors/readers for more resources

We present a practical scheme for performing ab initio supercell calculations of charged slabs at constant electron chemical potential mu, rather than at constant number of electrons N-e. To this end, we define the chemical potential relative to a plane (or reference electrode) at a finite distance from the slab (the distance should reflect the particular geometry of the situation being modeled). To avoid a net charge in the supercell, and thus make possible a standard supercell calculation, we restore the electroneutrality of the periodically repeated unit by means of a compensating charge, whose contribution to the total energy and potential is subtracted afterwards. The constant mu mode enables one to perform supercell calculation on slabs, where the slab is kept at a fixed potential relative to the reference electrode. We expect this to be useful in modeling many experimental situations, especially in electro-chemistry. (C) 2001 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available