4.7 Article

Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature

Journal

JOURNAL OF FLUID MECHANICS
Volume 439, Issue -, Pages 305-333

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001004633

Keywords

-

Ask authors/readers for more resources

Transition arising from a separated region of flow is quite common and plays an important role in engineering. It is difficult to predict using conventional models and the transition mechanism is still not fully understood. We report the results of a numerical simulation to study the physics of separated boundary-layer transition induced by a change of curvature of the surface. The geometry is a flat plate with a semicircular leading edge. The Reynolds number based on the uniform inlet velocity and the leading-edge diameter is 3450. The simulated mean and turbulence quantities compare well with the available experimental data. The numerical data have been comprehensively analysed to elucidate the entire transition process leading to breakdown to turbulence. It is evident from the simulation that the primary two-dimensional instability originates from the free shear in the bubble as the free shear layer is inviscidly unstable via the Kelvin-Helmholtz mechanism. These initial two-dimensional instability waves grow downstream with a amplification rate usually larger than that of Tollmien-Schlichting waves. Three-dimensional motions start to develop slowly under any small spanwise disturbance via a secondary instability mechanism associated with distortion of two-dimensional spanwise vortices and the formation of a spanwise peak-valley wave structure. Further downstream the distorted spanwise two-dimensional vortices roll up, leading to streamwise vorticity formation. Significant growth of three-dimensional motions occurs at about half the mean bubble length with hairpin vortices appearing at this stage, leading eventually to full breakdown to turbulence around the mean reattachment point. Vortex shedding from the separated shear layer is also observed and the 'instantaneous reattachment' position moves over a distance up to 50% of the mean reattachment length. Following reattachment, a turbulent boundary layer is established very quickly, but it is different from an equilibrium boundary layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available