4.6 Article

Alternative Activation Mechanisms of Protein Kinase B Trigger Distinct Downstream Signaling Responses

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 290, Issue 41, Pages 24975-24985

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M115.651570

Keywords

-

Funding

  1. Spanish Ministry of Economy and Competitiveness [BFU2010-15923, SAF2010-18518]
  2. Comunidad Autonoma de Madrid [S2010/BMD-2457]
  3. National Cancer Research Centre
  4. La Caixa Foundation
  5. Caja Navara postdoctoral fellowship
  6. Sever Ochoa funds
  7. Spanish Ramon y Cajal fellowship
  8. Ramon y Cajal Program [RYC-2010-06948]
  9. Volkswagen Foundation [Az: 86 416-1]

Ask authors/readers for more resources

Protein kinase B (PKB/Akt) is an important mediator of signals that control various cellular processes including cell survival, growth, proliferation, and metabolism. PKB promotes these processes by phosphorylating many cellular targets, which trigger distinct downstream signaling events. However, how PKB is able to selectively target its substrates to induce specific cellular functions remains elusive. Here we perform a systematic study to dissect mechanisms that regulate intrinsic kinase activity versus mechanisms that specifically regulate activity toward specific substrates. We demonstrate that activation loop phosphorylation and the C-terminal hydrophobic motif are essential for high PKB activity in general. On the other hand, we identify membrane targeting, which for decades has been regarded as an essential step in PKB activation, as a mechanism mainly affecting substrate selectivity. Further, we show that PKB activity in cells can be triggered independently of PI3K by initial hydrophobic motif phosphorylation, presumably through a mechanism analogous to other AGC kinases. Importantly, different modes of PKB activation result in phosphorylation of distinct downstream targets. Our data indicate that specific mechanisms have evolved for signaling nodes, like PKB, to select between various downstream events. Targeting such mechanisms selectively could facilitate the development of therapeutics that might limit toxic side effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available