4.4 Article

Redox signalling in chloroplasts and mitochondria: genomic and biochemical evidence for two-component regulatory systems in bioenergetic organelles

Journal

BIOCHEMICAL SOCIETY TRANSACTIONS
Volume 29, Issue -, Pages 403-407

Publisher

PORTLAND PRESS
DOI: 10.1042/BST0290403

Keywords

evolution; photosynthesis; redox; regulation; respiration

Ask authors/readers for more resources

Redox chemistry is central to the primary functions of chloroplasts and mitochondria, that is, to energy conversion in photosynthesis and respiration. However, these bioenergetic organelles always contain very small, specialized genetic systems, relics of their bacterial origin. At huge cost, organellar genomes contain, typically, a mere 0.1% of the genetic information in a eukaryotic cell. There is evidence that chloroplast and mitochondrial genomes encode proteins whose function and biogenesis are particularly tightly governed by electron transfer. We have identified nuclear genes for 'bacterial' histidine sensor kinases and aspartate response regulators that seem to be targeted to chloroplast and mitochondrial membranes. Sequence similarities to cyanobacterial redox signalling components indicate homology and suggest conserved sensory and signalling functions. Two-component redox signalling pathways might be ancient, conserved mechanisms that permit endogenous control over the biogenesis, in situ, of bioenergetic complexes of chloroplasts and mitochondria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available