3.8 Article

Use of chelating resins and inductively coupled plasma mass spectrometry for simultaneous determination of trace and major elements in small volumes of saline water samples

Journal

FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY
Volume 370, Issue 7, Pages 909-912

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s002160100847

Keywords

-

Ask authors/readers for more resources

For some saline environments (e.g. deeply percolating groundwater, interstitial water in marine sediments, water sample collected after several steps of fractionation) the volume of water sample available is limited. A technique is presented which enables simultaneous determination of major and trace elements after preconcentration of only 60 mL sample on chelating resins. Chelex-100 and Chelamine were used for the preconcentration of trace elements (Cd, Cu, Pb, Zn, Sc) and rare earth elements (La, Ce, Nd, Yb) from saline water before their measurement by inductively coupled plasma mass spectrometry. Retention of the major elements (Na, Ca, Mg) by the Chelamine resin was lower than by Chelex; this enabled their direct measurement in the solution after passage through the resin column. For trace metal recoveries both resins yield the same mass balance. Only Chelex resin enabled the quantitative recovery of rare earth elements. The major elements, trace metals and rare earth elements cannot be measured after passage through one resin only. The protocol proposes the initial use of Chelamine for measurement of trace and major elements and then passage the same sample through the Chelex resin for determination of the rare earth elements. The detection limit ranged from 1 to 12 pg mL(-1). At concentrations of 1 ng mL-1 of trace metals and REE spiked in coastal water the precision for 10 replicates was in the range of 0.3-3.4% (RSD). The accuracy of the method was demonstrated by analyzing two standard reference waters, SLRS-3 and CASS-3.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available