4.5 Review

Energetic neutral atom imaging of the heliospheric boundary region

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volume 106, Issue A8, Pages 15767-15781

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JA000328

Keywords

-

Ask authors/readers for more resources

Energetic neutral atom (ENA) imaging is a powerful technique, which can remotely probe the properties of distant hot plasmas. Hot plasmas are abundant at the heliospheric boundary, the region where the expanding solar wind meets the surrounding local interstellar cloud. Here we present a new concept for imaging this boundary in ENA fluxes. Heliospheric ENAs are born from charge exchange between energetic protons and the background interstellar atomic hydrogen gas. The technique is ideal for studying the asymmetric three-dimensional heliospheric interface region remotely, from 1 AU. We show that ENA imaging in the 0.2-6 keV energy range will establish the nature of the termination shock and properties of hot proton populations in the heliosheath. We also examine how the evolution of pickup proton populations at and beyond the shock can be explored. Global heliosphere ENA images will distinguish among the competing models of the interaction between the Sun and the local interstellar medium, and they will reveal the physics of important processes in the interface region. Heliospheric ENA fluxes are exceptionally weak, which makes imaging implementation difficult. Nonetheless, we show how single-pixel ENA sensors can image the heliosphere from a spinning spacecraft on a typical mission near 1 AU. The required instrumentation is briefly discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available