4.4 Article

Adaptive output feedback control of a class of non-linear systems using neural networks

Journal

INTERNATIONAL JOURNAL OF CONTROL
Volume 74, Issue 12, Pages 1161-1169

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/00207170110063480

Keywords

-

Ask authors/readers for more resources

This paper presents tools for the design of a neural network based adaptive output feedback controller for a class of partially or completely unknown non-linear multi-input multi-output systems without zero dynamics. Each of the outputs is assumed to have relative degree less or equal to 2. A neural network based adaptive observer is designed to estimate the derivatives of the outputs. Subsequently, the adaptive observer is integrated into a neural network based adaptive controller architecture. Conditions are derived which guarantee the ultimate boundedness of all the errors in the closed loop system. Stability analysis reveals simultaneous learning rules for both the adaptive neural network observer and adaptive neural network controller. The design approach is illustrated using a fourth order two-input two-output example, in which each output has relative degree two.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available