4.5 Article

In vivo electroporation-mediated transfer of interleukin-12 and interleukin-18 genes induces significant antitumor effects against melanoma in mice

Journal

GENE THERAPY
Volume 8, Issue 16, Pages 1234-1240

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3301519

Keywords

electroporation; gene therapy; cytokine; Epstein-Barr virus-based vector; episomal vector; melanoma

Ask authors/readers for more resources

Direct intratumoral transfection of cytokine genes was performed by means of the in vivo electroporation as a novel therapeutic strategy for cancer. Plasmid vectors carrying the firefly luciferase, interleukin (IL)-12 and IL-18 genes were injected into established subcutaneous B16-derived melanomas followed by electric pulsation. When plasmid vectors with Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) gene were employed, the expression levels of the transgenes were significantly higher in comparison with those obtained with conventional plasmid vectors. In consequence of the transfection with IL-12 and IL-18 genes, serum concentrations of the cytokines were significantly elevated, while interferon (IFN)-gamma also increased in the sera of the animals. The IL-12 gene transfection resulted in significant suppression of tumor growth, while the therapeutic effect was further improved by co-transfection with IL-12 and IL-18 genes. Repetitive co-transfection with IL-12 and IL-18 genes resulted in significant prolongation of survival of the animals. Natural killer (NK) and cytotoxic T lymphocyte (CTL) activities were markedly enhanced in the mice transfected with the cytokine genes. The present data suggest that the cytokine gene transfer can be successfully achieved by in vivo electroporation, leading to both specific and nonspecific antitumoral immune responses and significant therapeutic outcome.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available