4.6 Review

Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis

Journal

ANALYST
Volume 140, Issue 17, Pages 5821-5848

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5an00861a

Keywords

-

Ask authors/readers for more resources

We herein aim to report on the fabrication of DNA nano-heterostructures usable as a robust multi-functional analytical system to obtain multiple and complex data in parallel format from a single sample with unprecedented analytical performances. The ability of chemical information contained in the sequences of programmed DNA structures to organize matter made DNA become a unique material in the nanoworld. Such carefully designed DNA nanostructures can then be functionalized/templated with different biomolecules/nanomaterials as different as nanoparticles, nanowires, organic molecules, peptides, and proteins with controlled spacing on the nanometer scale (<10 nm). In this way, it is possible to combine the properties of both DNA and nanomaterials for exposing the designed functionality and customizable geometrical hetero-nanostructures. By coupling automated on-chip high yield DNA synthesis with low cost detection methods, DNA-nanotechnology can enable the realization of high-sensitivity, multiplexed bioanalytical assays for many different applications like diagnostics, drug screening, toxicology, immunology and biosensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available