4.2 Article

Forces in piles of granular material: an analytic and 3D DEM study

Journal

GRANULAR MATTER
Volume 3, Issue 3, Pages 165-176

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s100350100086

Keywords

sandpiles; DEM; numerical modelling; stress dip; mechanics of discrete systems

Ask authors/readers for more resources

We investigate the stress distribution at the base of a conical sandpile using both analytic calculations and a three dimensional discrete element code. In particular, we study how a minimum in the normal stress can occur under the highest part of the sandpile. It is found that piles composed of particles with the same size do not show a minimum in the normal stress. A stress minimum is only observed when the piles are composed of particles with different sizes, where the particles are size segregated in an ordered, symmetric, circular fashion, around the central axis of the sandpile. If a pile is composed of particles with different sizes, where the particles are randomly distributed throughout the pile, then no stress dip is observed. These results suggest that the stress dip is due to ordered, force contacts between equiheight particles which direct stress to the outer parts of the pile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available