4.5 Article

Characterization of microsomal diacylglycerol acyltransferase activity from bovine adipose and muscle tissue

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1096-4959(01)00413-4

Keywords

triacylglycerol biosynthesis; acyltransferase; acyl-CoA; diacylglycerol; fatty acid; intramuscular fat; adipocytes; Bos taurus

Ask authors/readers for more resources

The activity of the triacylglycerol bioassembly enzyme, diacylglycerol acyltransferase (DGAT), was characterized in microsomal fractions prepared from bovine subcutaneous (SO adipose, intramuscular (IM) adipose, and muscle (pars costalis diaphragmatis) tissue. The activity of DGAT was generally higher from SC adipose tissue than from IM adipose or muscle tissue. The characteristics of DGAT activity from the three bovine tissues resembled the activity characteristics observed in previous studies from various other organisms and tissues; the pH optimum was near neutrality, the activity was almost completely inhibited by pre-incubation with N-ethylmaleimide (NEW and the enzyme accepted a broad range of acyl-CoAs and sn-1,2-diacyiglycerols. In some aspects, the SC adipose tissue DGAT activity was different from the DGAT activity from the other two tissues. The SC adipose tissue DGAT activity was not as susceptible to inhibition by NEM as the enzymes from the two other tissue sources, and it exhibited increased specificity for substrates containing oleoyl moieties. The differences in DGAT properties between the three bovine tissues may account to some extent for the differences in the relative fatty acid composition and the positional distribution of fatty acids in triacylglycerol between bovine tissues. The observed differences in enzymatic properties also support recent biochemical and molecular genetic observations that imply the existence of multiple DGAT genes and/or isoforms. (C) 2001 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available