4.5 Article

A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 29, Issue 8, Pages 677-691

Publisher

SPRINGER
DOI: 10.1114/1.1385805

Keywords

cell migration; chemotaxis; lamellipod extension; phosphoinositides

Funding

  1. NIGMS NIH HHS [GM54739] Funding Source: Medline

Ask authors/readers for more resources

The crawling movement of cells in response to a chemoattractant gradient is a complex process requiring the coordination of various subcellular activities. Although a complete description of the mechanisms underlying cell movement remains elusive, the very first step of directional sensing, enabling the cell to perceive the imposed gradient, is becoming more transparent. A fundamental problem of directional sensing is its exquisite sensitivity. Even in the presence of relatively shallow chemoattractant gradients, cell projections are extended precisely in the region exposed to the highest chemoattractant concentration. This reflects the existence of a mechanism for amplifying the external signal. Recent experiments have identified a potential candidate for the seat of this amplification-membrane phosphoinositides such as PI4,5P(2) and PI3,4,5P(3) appear to be the first components of the signal transduction pathway to be amplified. Perturbing the cell with various chemoattractant gradients reveals a rich spectrum of phosphoinositide dynamics (Parent, C. A., and P. N. Devreotes. Science 284:765, 1999). The goal of this work is to develop a mathematical model of these phosphoinositide dynamics. Specifically, we address the following questions: (a) Which signaling pathway could lead to the localized accumulation of membrane phosphoinositides? (b) Why is this accumulation independent of the slope and mean value of the chemoattractant garadient? The model is based on the phosphoinositide cycle that transfers phosphoinositides between the plasma membrane and endoplasmic reticulum. We show that a mathematical model taking due account of receptor desensitization and the reaction-diffusion processes of the phosphoinositide cycle captures many of the experimentally observed dynamics. Having shown the plausibility of the model with respect to directional sensing, we discuss its implications for lamellipod extension, the process that follows directional sensing. (C) 2001 Biomedical Engineering Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available