4.4 Article

Identification of 3,4-dihydroxy-2-oxo-butanal (L-threosone) as an intermediate compound in oxidative degradation of dehydro-L-ascorbic acid and 2,3-diketo-L-gulonic acid in a deuterium oxide phosphate buffer

Journal

BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY
Volume 65, Issue 8, Pages 1707-1712

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1271/bbb.65.1707

Keywords

L-ascorbic acid; degradation; L-threosone; diketo-L-gulonic acid

Ask authors/readers for more resources

Dehydro-L-ascorbic acid (DAA), an oxidation product of L-ascorbic acid (vitamin C), is unstable in the neutral and basic pH regions. When DAA was incubated in a phosphate buffer with deuterium oxide (pH 7.4), it was degraded to form the main degradation compound, which was identified as 3,4-dihydroxy-2-oxobutanal (L-threosone). This compound was also formed from diketo-L-gulonic acid (DKG) in a phosphate buffer with deuterium oxide. L-threosone had reducing activity, probably due to its enolization, and is likely to have been involved in the formation of the reducing activity that was observed in aqueous DAA and DKG solutions. As a reactive dicarbonyl compound, L-threosone might also take some role in the cross-linking of tissue proteins that are formed in vivo in the Maillard reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available