4.7 Article

Manufacturing cost modelling for concurrent product development

Journal

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING
Volume 17, Issue 4, Pages 341-353

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0736-5845(01)00009-6

Keywords

feature-based design; concurrent engineering; manufacturing cost modelling; object-oriented programming; process optimisation; fuzzy logic

Ask authors/readers for more resources

This research work aims to develop an intelligent knowledge-based system that accomplishes an environment to assist inexperienced users to estimate the manufacturing cost modelling of a product at the conceptual design stage of the product life cycle. Therefore, a quicker response to customers' expectations is generated. This paper discusses the development process of the proposed system for cost modelling of machining processes. Tt embodies a CAD solid modelling system, user interface, material selection, process/machine selection, and cost estimation techniques. The main function of the system, besides estimating the product cost, is to generate initial process planning includes generation and selection of machining processes, their sequence and their machining parameters. Therefore, the developed system differs from conventional product cost estimating systems, in that it is structured to support concurrent engineering. Manufacturing knowledge is represented by hybrid knowledge representation techniques, such as production rules, frames and object oriented. To handle the uncertainty in cost estimation model that cannot be addressed by traditional analytical methods, a fuzzy logic-based knowledge representation is implemented in the developed system. Based on the analysis of product life cycle, the estimated cost included material, processing, machine set-up and non-productive costs. A case study is discussed and demonstrated to validate the proposed system. (C) 2001 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available