4.7 Article

Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo

Journal

FASEB JOURNAL
Volume 15, Issue 10, Pages 2283-+

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.01-0321fje

Keywords

canine adenovirus; neurons; retrograde axonal transport; neurodegenerative diseases

Ask authors/readers for more resources

In the central nervous system (CNS), there are innate obstacles to the modification of neurons: their relative low abundance versus glia and oligodendrocytes, the inaccessibility of certain target populations, and the volume one can inject safely. Our aim in this study was to characterize the in vivo efficacy of a novel viral vector derived from a canine adenovirus (CAV-2). Here we show that CAV-2 preferentially transduced i) rat olfactory sensory neurons; ii) rodent CNS neurons in vitro and in vivo; and, more clinically relevant, iii) neurons in organotypic slices of human cortical brain. CAV-2 also showed a high disposition for retrograde axonal transport in vivo. We examined the molecular basis of neuronal targeting by CAV-2 and suggest that due to CAR (coxsackie adenovirus receptor) expression on neuronal cells-and not oligodendrocytes, glia, myofibers, and nasal epithelial cells-CAV-2 vectors transduced neurons preferentially in these diverse tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available