4.5 Review

The heliospheric current sheet

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
Volume 106, Issue A8, Pages 15819-15831

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JA000120

Keywords

-

Ask authors/readers for more resources

The heliospheric current sheet (HCS) is the boundary between open oppositely directed magnetic field lines which commonly originate as the outward extension of the solar magnetic dipole. The dipole tilt, the rotation of the Sun, and the outward propagation of the solar wind cause peaks and valleys in the current sheet which spiral outward. The HCS extends throughout the heliosphere to the greatest distances reached by Pioneer and Voyager. It serves as a magnetic equator, and solar wind parameters including speed, temperature, density, and composition vary with distance from the HCS. Extrapolated back to the Sun, especially near solar minimum, the HCS corresponds to the low-latitude streamer belt. Both features are closely related to a neutral line obtained by extrapolating photospheric magnetic fields to a source surface at several solar radii. The current sheet and sector structure persist throughout the solar cycle including solar maximum. At 1 AU the width of the HCS is approximately 10,000 km while a surrounding plasma sheet is thicker by a factor of similar to 30. The field inside the HCS does not simply decrease to a null and then reappear with the opposite sense. Instead, the field rotates at nearly constant magnitude from one polarity to the other. In spite of theoretical expectations that fields on opposite sides of the HCS will merge or reconnect, there is little evidence that such is occurring. Many scientific questions remain unanswered. What are the global properties of the HCS near solar maximum, and how faithfully are they reproduced by source surface models? Are multiple HCS crossings caused by waves on the current sheet or by multiple current sheets? What is the effect of coronal mass ejections on the HCS and vice versa?

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available