4.8 Article

Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair

Journal

NATURE MEDICINE
Volume 7, Issue 8, Pages 961-966

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/91008

Keywords

-

Funding

  1. Intramural NIH HHS [Z01 BC004517-31] Funding Source: Medline

Ask authors/readers for more resources

While investigating the novel anticancer drug ecteinascidin 743 (Et743), a natural marine product isolated from the Caribbean sea squirt, we discovered a new cell-killing mechanism mediated by DNA nucleotide excision repair (NER). A cancer cell line selected for resistance to Et743 had chromosome alterations in a region that included the gene implicated in the hereditary disease xeroderma pigmentosum (XPG, also known as Ercc5). Complementation with wild-type XPG restored the drug sensitivity. Xeroderma pigmentosum cells deficient in the NER genes XPG, XPA, XPD or XPF were resistant to Et743, and sensitivity was restored by complementation with wildtype genes. Moreover, studies of cells deficient in XPC or in the genes implicated in Cockayne syndrome (CSA and CSS) indicated that the drug sensitivity is specifically dependent on the transcription-coupled pathway of NER. We found that Et743 interacts with the transcription-coupled NER machinery to induce lethal DNA strand breaks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available