4.5 Article

Modelling of small-angle X-ray scattering data using Hermite polynomials

Journal

JOURNAL OF APPLIED CRYSTALLOGRAPHY
Volume 34, Issue -, Pages 510-518

Publisher

MUNKSGAARD INT PUBL LTD
DOI: 10.1107/S0021889801006951

Keywords

-

Ask authors/readers for more resources

A new algorithm, called the term-selection algorithm (TSA), is derived to treat small-angle X-ray scattering (SAXS) data by fitting models to the scattering intensity using weighted Hermite polynomials. This algorithm exploits the orthogonal property of the Hermite polynomials and introduces an error-reduction ratio test to select the correct model terms or to determine which polynomials are to be included in the model and to estimate the associated unknown coefficients. With no a priori information about particle sizes, it is possible to evaluate the real-space distribution function as well as three- and one-dimensional correlation functions directly fro the models fitted to raw experimental data. The success of this algorithm depends on the choice of a scale factor and the accuracy of orthogonality of the Hermite polynomials over a finite range of SAXS data. An algorithm to select a weighted orthogonal term is therefore derived to overcome the disadvantages of the TSA. This algorithm combines the properties and advantages of both weighted and orthogonal least-squares algorithms and is numerically more robust for the estimation of the parameters of the Hermite polynomial models. The weighting feature of the algorithm provides an additional degree of freedom to control the effects of noise and the orthogonal feature enables the reorthogonalization of the Hermite polynomial with respect to the weighing matrix. This considerably reduces the error in orthogonality of the Hermite polynomials. The performance of the algorithm has been demonstrated considering both simulated data and experimental data from SAXS measurements of dewaxed cotton fibre at different temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available